Spectrometer (Field) / Probe

(1H sens.) 0.1%Ethyl Benzene (EB) 

(1H sens.) 10%Ethyl Benzene (EB)

Sucrose (2 mM in H2O:D2O 9:1)

(13C) ASTM (60% C6D6 and 40% p-Dioxane) 

 (19F) Trifluorotoluene 0.05% in CDCl3

Kerry (500)/CP TXO

 

1391

 

1691

 

Kerry (500)/RT TXO

 

373

 

228

 

 

 

 

 

 

 

Devon (500)/CP TCI

 

4387

882

918

 

 

 

 

 

 

 

Dexter (600)/CP QCI

 

5309

913

1100

 

*mass equiv.

 

318

55

67

 

 

 

 

 

 

 

Kurgan (600)/ 1.7 mm

 

973

303

67

 

*mass equiv.

 

16000

5050

1100

 

 

 

 

 

 

 

Vosges (600)/CP TXO

 

7175

1286

1394

7682

*mass equiv.


430

77

85

 

                      
Vosges (600)/RT TXI

 

1527

374

 

 

 

 

 

 

 

 

Telemark (750)/CP TXI

 

6091

758

1060

 

Telemark (750)/RT TXI

 

1866

483

 

 

 Fleckvieh   10276  1735  1505  1861  

CP  - cryoprobe

RT - room temperature probe

*mass equiv.  - this is the effective S/N for the equivalent mass of material compared across the 600 MHz spectrometers.  Thus, if a sample is quantity limited, not solubility limited, cramming it all into the 1.7 mm tube to run on Kurgan will give the best S/N.

Comments:

  • Telemark vs. Vosges in S/N:

Vosges' cryoprobe has about 15% greater S/N than Telemark's cryoprobe for EB but a whopping 70% for sucrose.  This is due to a mix of console improvements (probably minor) and cryoprobe improvements.  For scaling, assuming the ratios hold true, a new cryoprobe for Telemark should be about 20% better S/N for EB and 40% better S/N for sucrose than the probe on Vosges, or 85% better S/N for EB and 55% better for sucrose than the current probe.

  • Dexter vs. Vosges in S/N:

Dexter's cryoprobe is tuneable to 31P in addition to the normal 1H, 13C, and 15N nuclei.   Thus, the two cryoprobes are not directly comparable, although presumably a new probe would have a modest boost to S/N, probably in the 10% range.

Become an NMRFAM User
Contacts | Map | Policy
Instrumentation w/Rates
Pulse Programs
Remote Access to NMRFAM
Spectrometer Live Calendar
Sundial (Request NMR Time)
Software Tools
e-News Sign-Up

Biochemistry 800 - Practical Nuclear Magnetic Resonance Theory 

Biochemistry 801 - Biochemical Applications of Nuclear Magnetic Resonance 

"The Future of NMR-Based Metabolomics, Current Opinion in Biotechnology (2017), pp. 34-40

Documents on the use of the Bruker-Axs Nanostar,SAXS instrument and analysis of SAXS data are now available.

NMRFAM-SPARKY Distribution - the popular NMR analysis program SPARKY recompiled (including updated python and Tcl/Tk) with incorporation of PINE-Sparky, enhancements to import/export to the structural analysis program CYANA, and other useful python extensions.

ADAPT-NMR Enhancer: Complete Package for Reduced Dimensionality in Protein NMR Spectroscopy

RNA-PAIRS: RNA Probabilistic Assignment of Imino Resonance Shifts

PACSY, a Relational Database Management System for Protein Structure and Chemical Shift Analysis 

 

Donate to NMRFAM. US tax-deductible donation can be made to NMRFAM
Please write check payable to "UW Foundation, Account 112152802"  
And mail to: 
Attn: Sarah Lynn Traver Saunders
Associate Administrative Program Specialist 
University of Wisconsin-Madison 
433 Babcock Drive 
Madison, WI 53706 
Tel: 608-265-2507 or email 

 

1st: Lai Bergeman 
Rm 171; Phone 262-3173

2nd: Milo Westler
Rm B160; Phone 263-9599

3rd: Paulo F. Cobra
Rm B224; Phone 265-3303

4th: Marco Tonelli
Rm B160; Phone 263-9493

5th: John Markley
Rm 171A; Phone 263-9349

We welcome your questions and feedback!

NMRFAM Established 1987